Project Stella Maris

stella_marisAs you approach the main entry of this church you are greeted with a stunning image printed on glass of “Madonna and Child” by Giovan Battista Salvi, “Il Sassoferrato”.

Madonna and Child

ColourLite Image digital ceramic glass printing by G.James offered the architect a cost effective and long term durable solution, creating a signature dimension.

“The image of the Madonna and Child is all embracing as we enter the front door of Stella Maris Catholic Church.  This age old image draws us like the Child to His mother. The curtain walls bring light and shade to the sanitary.  The two columns of glass are a symbol of water.  Water is symbolic of our Christian faith.”
– Sonya Slater, Stella Maris Catholic Church

©SBPhoto_Stella Maris Church _025“The original concept was achieved and that was the building was to be a building within the park and the park within the building. We were able to produce large pieces of glass which had high resolution that has longevity and is easy to maintain.”
– Lee & Sandra Dunne, Architect

“G.James assisted greatly at the design stage of this project. This made the process of ordering and supply of the products so much easier, with our client being thrilled with the final product.”
– Dave Stewart, NGA

Location Broadbeach, Gold Coast, QLD
Glass GJ ColourLite Image 13.52 mm

Heat Strengthened Laminate

GJ ColourLite Graphic 13.52 mm

Heat Strengthened Laminate

Architect Patrick McGuinness and Lee Dunne, Architects. Sandra Dunne, Interior Designer
Builder Stokes Wheeler
Glazier NGA
Photographer Scott Burrows

Victoria University – Printed Glass Façade

Digitally printed glass facadeThe printed design portray a design concept of human movement and bio mechanics with abstract images of a man running. Functionally the printed glass allows for light transmission while controlling thermal performance. The architect opted for digital ceramic glass printing for its short lead time, print consistency, and freedom of design where they could alter the design without the considerations of traditional screens.

The façade features 348 printed panels comprising a total area of 1600m², and utilises 24mm G.James TwinGlaze Ultra ETherm 60 glass.

ARCHITECT: John Wardle Architects

Soul Apartments, Surfers Paradise

Soul tower, Surfers Paradise - Balustrades, sliding doors and fixed windowsSoul Apartments were constructed at an exclusive location by the water at the heart of Surfers Paradise on the Gold Coast. The tower reaches 77 storeys, including 2 levels of commercial premises at the base, one level of leisure facilities for the resident population and the tower above devoted to lifestyle apartments.

The 243m high building was designed by DBI Design PL and built by Grocon, under the direction of the Juniper Group.  The tower is situated at the end of Cavill Avenue – the popular shopping strip at Surfers Paradise. G.James Glass & Aluminium won the contract to supply the design, fabrication and installation of the glazing – including windows, doors, louvres, curtain wall, sun blades and balustrades.

The Residential Tower Facade

The residential tower consists of 288 apartments with a variety of glazing types – a curtain wall face, balconies with sliding doors and windows. The sheer curtain wall façade was produced using the 650 Series glazing system, and fitted between the concrete support columns. Sky blue laminated glass contrasts well with the white columns in the marine setting.  The majority of the project’s extrusions were powder coated (finished) in Eternity Steel – a dark finish that blended into the shadow lines.

The balcony glazing utilizes the 445 Series sliding doors, 450 Series fixed windows and 415 Series louvres. The balustrading for the tower was done with 571 Series. At the top of the building, the shape of the balustrade glass was raked from level 60 and above to support the curved aspect. The raked balustrades required special layouts and bracketry specific to the level they are installed on to make the curve regular.

The tower colour scheme contrasts vivid blue sections with predominantly white areas.  The blue areas were created using sky blue glass, the same as the sheer wall. The white areas use a Cool Grey glass. The Balustrades match the colour coding of the area they fall in, and intensify the look with a reflective coating.

Sun blades are installed on the upper portion of the tower.  The south face at the sub penthouse level has large angular alpolic blades fitted to the Juliet balconies, creating a visual feature and angled to block harsh glare.

Commercial Levels

On the lower commercial levels, 3 floors high, G.James supplied the ceramic printed toughened glass (installed by others) and balustrading. The ceramic printed toughened glass for the awnings has a creeping fern pattern.  The 571 Series balustrades for the first 3 floors were internal and external, and include the the shopping plaza. 

QuickAlly Access

QuickAlly Access Solutions (a G.James business) supplied scaffolding to replace damaged balustrade, recently.  The affected glazing occured on level 6 and level 75.  Both balustrade glazing occur on balconies with limited space to provide a cantilever, so solutions were suggested and engineered to find the best approach. Ladder beams and other Systems Scaffold products were used for a suspended platform to provide safe access to the high risk heights.

The Effect

The glazing on this project makes a stunning impression from inside and out, and could not be accomplished without a high level of design and coordination. It was a great opportunity to contribute to an iconic building.

New Glazing Product: Low E Coated Glass Launch

Solarplus TLE 62 new glass product

G.James Glass and Aluminium pride ourselves on being at the forefront of the latest product developments and are proud to offer a new range of high performance Low E coated glass products, Solarplus TLE62. This new range of coated glass will be incorporated into G.James TwinGlaze Insulated glass Units and will supersede the current range of Solarplus Low E products offered.


Low E glass has a range of distinct benefits – the major function is to provides better thermal performance. The new Solarplus TLE 62 glass produces results in an efficient method, requires shorter lead times for production, and is ideal for jobs large or small.

Solarplus TLE 62 has high visible light transmittance and neutral appearance in both transmittance and reflectance which is low internally and externally.  Please refer to the performance table below for data, and please note, this is for glass only performance. Contact G.James for whole of window data.

Solarplus TLE 62 new glass product

The thermal performance is excellent with low U Values and Solar Heat Gain figures.

Colour Options

The Low E coating is on clear glass and can be combined with tinted glass to provide different aesthetic qualities. The range includes:

  • Grey
  • Green
  • Bronze
  • Blue
  • Super Green

The Solarplus TLE 62 is a durable coating that is able to be heat treated for toughening where it is required.

The G.James manufacturing facilities are currently being upgraded, and this product will be available in October, 2013. Please contact us with any further enquiries about this new product range.

Gasworks – A Modern Development with a Heritage Heart

Gasworks building developmentOngoing development of a historical site located at Newstead (Brisbane), sees it transforming in stages to a new mixed use precinct. The name derives from the sites original use – the gasworks, and part of the project is to protect the heritage listed gasometer located prominently amid the gasworks buildings.

Originally built in 1863, the gasometer once stored gas in a large bladder contained within its frame work.  The Gasometer has been fully restored ensuring the ornate pinnacles and lace work beams stand as equal alongside its newly constructed neighbours.  It creates a unique contrast set amidst the strong lines and bold shapes of the modern architectural features of the Gasworks building development.

Designed by the same team that worked on the adjacent Energex building – Architect Cox Rayner and builders FKP, the buildings in this phase of construction comprise of Building A on Skyring Terrace (five storeys) and Building E on Longland St (three storeys).

G.James Role

G.James Glass and Aluminium supplied and installed glazing facades, doors, windows and some extruded sun hoods. Building A has a proposed 5 star green star rating – so energy efficiency, acoustics and air infiltration were important design factors. As such, products with proven test results were selected for use.

Building A

Building A comprises ground floor shop front retail with four upper levels of offices. The offices utilise the flush glazed 651 series glazed with IGUs made up of green glass with a low E coating for energy efficiency, a 12mm air space, and 6mm clear glass internally. This also assisted in achieving a better acoustic rating.  Spandrel panels were made with a green ceramic painted surface – a premium spandrel glass option  that maintains the look set by the vision area.

Building E

Building E was a combination of two levels of residential apartments along Longland Street, two levels of office space along the breeze way between the buildings, and a retail shop front precinct on the ground level. The offices in building E utilize the 650 series, also flush glazed, but to accommodate 11.52mm laminated glass. The glass has a low E coating and the same colour, but didn’t require the same level of acoustic rating or energy efficiency. The office glazing also incorporated architectural features such as glass fins for extra strength and sun hoods for protection.

The residential apartments use a range of glazing styles. Fixed framing used the 650 series system with 265  series awning windows spaced across the facade. Balconies feature four side supported 550 series balustrades with access through 445 series sliding doors.

Shopfront Design Problem

The retail areas required a centrally glazed pocket, but the opening size and wind loads exceeded the constraints of the current system.  As many architects are looking for options to make windows larger, the decision was made to replace the current aluminium vertical members, the mullions, with a stiffer option. The new design also incorporated the ability to strengthen it further. This new addition to the G.James range is used extensively throughout the Gasworks project.

Practically Completed

Practical completion was achieved on the 3rd August, 2013, however there are still minor works, interior fit outs and landscape work under way.  Building E has been designed so a residential tower can be constructed above it in the future.

The Gasworks project is an aesthetic feast, and well worth a look if you are in the area. Please consult the interactive map project to get the location and a summary of the project information.

IGUs. A sound acoustic solution?

sound and noise acoustic control with IGUsInsulating Glass Units (IGUs) or double glazing, have been a popular solution to control noise, but they aren’t the only, or even the best solution in many cases. The aim of this article is to explain how acoustic problems are identified, assessed and provide solutions to properly address them.


The acoustic performance of façades is becoming more important in building design, and not surprisingly is included as part of the Green Star rating process. Although it is a small part, it’s raising the profile of sound reduction and the need to find better solutions to the increasingly worsening noise problems in today’s society.

To better understand how to mitigate sound, it is beneficial to have an awareness of a few key ideas; how sound is transferred, the way different noises are measured, know about the principles to minimise the variety of sources and coordinating appropriate solutions. Prior knowledge makes finding a solution a lot quicker and easier when you are consulting a professional.  Using advice to compare test results, it is imperative to know the difference between glass only and window system results if you want sound acoustic solutions.

Determining sound factors

Noise sources in the vicinity of a project need to be identified to best determine the most efficient glazing solutions. Look for risk sources, some examples of which are below;

  • Traffic noise from vehicles – cars and/or trucks
  • Trains
  • Planes and flight paths
  • Trams
  • Boats
  • Entertainment venues
  • Industry – a warehouse, factory plant, a truck depot up the road

For each source, be aware of the proximity and direction it will be coming from.  Future changes that will affect sound transfer must also be considered – empty or older blocks that will be used for building development, planned roads and motorways to be constructed, or a feature that may be removed to expose the project to heightened noise distribution. This information will be assessed by an acoustic engineer or glazing contractor looking at the requirements of the project.

The two main properties that contribute to disturbance from noise are the frequency and intensity level at various frequencies, or volume. Both influence the selection of appropriate glazing systems for a project.


Sound travels as sound waves (variations in pressure) that have different frequencies. When the sound wave hits an object, this will be absorbed, transferred or reflected dependant on the properties of the object and the frequency of the sound. Below is a table that describes the frequencies associated with different noises;

Frequency distribution


The inherent volume or loudness of noise is measured in decibels (dB). Following is a table that gives you an idea of how loud different noises are;

comparison of sound

 Acoustic fact:

The human ear cannot distinguish a change in noise level of 3dB or less.

Different types of glass will assist deadening the various frequency and sound levels. To decide what the best solutions are, the window systems need to be comparable.

Measuring how much a glazing system suppresses noise

The current standard unit that is used to nominate the amount of acoustic insulation achievable is the Rw. An Rw rating is applied to many products to compare its capability to reduce sound against similar products. However, the nature of glazing systems means that frequency plays a large part in the transference of sound. So correction factors are applied to the Rw and expressed as Rw(C, Ctr).

Using Rw Data results:

When looking at results, ensure you understand what the Rw rating applies to.  Glass only data will give you just that – a figure for the glass.  It will not be comparable with a whole of system framing. Glass only data has a higher figure, and misrepresents the effectiveness of the desired glazing solution.


The Rw, or weighted sound reduction index, is a material or system’s ability to reduce sound transferring through to the other side, of a window or wall. As a rough guide, an increase of 1Rw reduces the sound perceived on the other side by about 1dB.

Rw(C, Ctr)

The correction factor for the Rw takes frequency into account. Medium to high frequency noise like conversation, and faster traffic (travelling more than 80kmh) are nominated as the C number. Low to medium frequency sound like urban traffic and planes flying overhead are the Ctr figure.
If a project has a requirement of Rw = 32(-1,-4), then the Rw = 32, the Rw+C = 31 and the Rw+Ctr = 28. The noise frequency distribution determines the correction factor figure to be used. If the predominant noise source affecting a project is traffic noise, being a low frequency problem, the Rw+Ctr figure is used. In this case, the figure to achieve is 28. If a window system is rated at Rw30(-2,-2), the Rw+Ctr = 28, therefore achieving the above requirement. The Rw number should always be used with correction factors.

Testing the Acoustic Performance of Glazing Systems

Testing is done by accredited organisations in an acoustic laboratory. The testing space consists of two rooms of known acoustic properties separated by a wall with a high sound insulation. The rooms are constructed of thick block work with the entire laboratory sitting on airbags to isolate it from ground vibration. An opening is made in the wall for the glazing system. One of the rooms is set up as a source room, and one is the receiving room. The difference in noise level measured between the rooms is used to calculate Rw, C and Ctr figures that are attributed to the system tested.

Acoustic Solutions

There are several acoustic principles that are applied to the design of glazing systems to obtain the best performance to guide you in choosing the optimal glazing products.

Glazing design

Keeping sound out is like keeping water out – any gaps provide a path by which the acoustic efficiency of a system is reduced. Even the smallest crevice or notch out of a system makes a difference. Glazing systems can be riddled with gaps – good systems minimise these as much as possible. Testing is the only way to know how any system will perform.

Product selection

Restricting sound penetration is only as good as the barrier’s weakest point. Opening or operable parts of a façade are the hardest places to control sound, but improvements in technology are minimising the issue. With changes in door design to allow for access according to AS 1428, it is good to be aware these points are made weaker, acoustically.  With glazing developments, there are solutions to help minimise this issue.

Window systems with a positive closing force are more effective at blocking out sound. Awning windows and hinged doors generally perform better than sliding windows and doors.

Acoustic seals can be used to improve glazing performance and achieve a better Rw rating. The only way this can be accurately assessed and used for compliance, is if the glazing system is tested with the acoustic seals.

An air gap between the glass panels in a glazing system can provide a degree of sound reduction dependant on the size of the air gap. Typical IGUs with an 8, 10 or 12mm air gap, the improvement is marginal. Larger double glazed air gaps are much more effective, with 50mm being the “sweet spot” with only marginal improvement beyond this. These large air gap systems are generally the best performing of any glazing system.  Jockey sash systems can also be used to create large air gaps but have size restrictions and may cause internal condensation issues.

Laminated glass can provide equivalent or better performance than a standard air gap IGU. Typically the thicker the laminate, the better the acoustic performance. Specifically designed acoustic interlayers are now available that provide an increase in performance in standard interlayers

Looking for assistance with acoustic design

Window fabricators can help you understand the acoustic performance that their products provide. If you are aware of the nature of noise pollution in the vicinity of your project, then it’s a matter of matching the correct products to minimise this problem. Look for new technology becoming available to better deal with the increasing noise issues in today’s society.

When using window acoustic data, ensure you are discussing whole of window system data. There is a lot of glass only data available, but it’s the frame that is typically the weakest acoustic point of a glazing system. The glass only data will not give you a proper representation of noise control.

5 Points to Remember

  1. Understanding Rw(C,Ctr).
  2. Gaps in Systems = sound transfer. Minimise these weak points, especially in operable glazing.
  3. Larger air gaps in between glazing layers helps acoustically.
  4. Familiarity with latest technology in sound reducing products like acoustic seals and interlayers.
  5. Test results need to be comparable. Look at whole glazing systems, not glass only test results.

Helpful Links

For further information on the subject, please refer to the suggested following resources:

Generic and Custom Plastic Extrusions, Gaskets and Seals

PVC extruded plastic gasketThe G.James Glass and Aluminium Plastics department has been operating since 1995, and started out manufacturing just 2 products for in house use. Type and quantity of manufacturing has been growing steadily ever since. Commercial sale of products initiated 5 years ago, and now supports several industries.

G.James Extrusions

The industries that G.James manufactures PVC plastic extrusion for include – building and construction, automotive, commercial refrigeration, marine, shop front, internal fit outs and railways to name a few. They come in a range of colours and PVC types, from rigid, semi rigid and flexible, including nitrile or rubber modified and TPV (Thermo Plastic Vulcanite) or Santoprene equivalent (this has the same properties, characteristics and function, but without the Santoprene brand name) as well as Santoprene, if its specifically required. Co extrusions (extrusions made from two different materials) and bushfire (BAL) rated extruded gaskets are also available.

The G.James facilities are capable of large scale commercial production. The production lines can produce up to approximately 2000m of plastic extrusion an hour – depending on the size and shape of the profile. Products are designed up to 100mm in Circumscribing Circle Diameter (CCD). At peak times, it will use up to 40 ton of material a month – and that’s not at full capacity.

Extrusion design

After initial contact, the design process involves an in depth look at what is required – the use, appropriate material for the conditions – sun and weathering, heat and chemical exposure. Identifying potential issues and mitigating them, or troubleshooting issues that may have occurred previously. Assessing die design and making a more effective proposal are all looked at prior to signing off drawings for a die to be made. Die trials are run and the resulting profile measured up for quality assurance purposes before commercial runs begin.

This process can take up to a couple of months if there is a lot of design involved, but is usually less. Ordering plastic extrusion has a two week lead time, but standard runs or more urgent requests can be processed to cater to customer needs.


During the design process

Efforts are made to ensure the die design is as beneficial and cost effective to the customer as possible. For example, a recent job started out with a profile design from a customer that required considerably expensive tooling and production costs.  Working with the customer and making a few die modifications, these costs were brought down by 60% . No impact was had on the effectiveness of the extrusion.

As an initial saving, G.James can arrange to have the tooling price amortised into the production price per metre to offset the lump sum.

Use in situ

18 years of experience by the PVC extrusion manager, Jason Clarke, ensures personal service from someone who knows how to make it work. Trouble shooting feeding problems, stopping gaskets from “popping” out of position, gasket “wave” problems and better shape design are among other issues that are addressed.

Point of manufacture

A length from every roll of extruded plastic is tested to ensure a quality product. Measurements are taken and information is recorded and stored so it can be tracked back to when and how it was made. Materials that work into other G.James products are also trialled for a suitable fit on completion to ensure a whole of system customer service.

Back end quality control

G.James conduct investigations into existing scenarios that are having problems. Extrusion and glass checks, incorrect use and out dated design issues can be looked at to assess the cause of any issues. Advice is given on the findings, whether it is a change in plastics die design, or other members that are found to be out of tolerance.

Manufacturing Process

It’s a short but interesting manufacturing process. The material comes in pellet form that is control fed through a hopper into a spiralling screw or ram. The pellets are heated, mixed and compressed as they are fed through the spiralling screw, and finally forced through the die into its final shape. After the gasket is extruded, it is immediately cooled in chilled water, and then dried before being cut into designated lengths and boxed, or rolled onto a spool.

This slideshow requires JavaScript.


All off cuts of plastic extrusion are recycled on site. They are shredded and prepared to go through the same hopper feed and production process. As a quality control issue, recycled material is only used on non-structural gaskets, such as fly screen splines.

Brisbane designed and made, supply is distributed Australia wide, with much of our standard range available off the shelf at any G.James branch. For more information on product and supply, call the PVC manager, Jason Clarke, on 0403 352 703 or 07 3815 4908. Keep up to date by looking up the PVC page on the G.James website.

Interactive Map: Building Brisbane

Brisbane construction projects by G.James Glass & Aluminium

Brisbane, being the location of our Head Office, sees many fine examples of G.James workmanship.   Here, we outline some of the biggest and best projects undertaken to showcase our capabilities in recent times.

The interactive map is designed so you can take a tour of some of our most recent and notable works.  Either at your desk looking out a CBD window, taking a stroll around town, and driving past a building or through an area you have always wanted to know more about.


G.James has contributed widely to what Brisbane looks like today.   There are buildings that have added to Brisbane’s sky line and to the diversity of looks and uses that are designed for the various parts of this fair city.  On some buildings, there are unique features that make them distinctive.  For example –

  • the ribbons of M&A,
  • the splash of red across the Australian Federal Police building,
  • the glass wall of Sir Samuel Griffith Centre,
  • the towering Aurora and Riparian plaza.

There are many buildings that have achieved the coveted green star energy efficient design,  some interesting artwork on glass designed by local artists – its worth a visit to the Anthropology Museum at UQ to see the ceramic printed window alone. Some of the buildings have specialised glass systems to suit the works being done, like the Translational Research Institute and the ABC headquarters.

There are projects that have altered the face of a tired old façade, so if you look at an old image of QIMR, you won’t recognize it.  And then theres the Suncorp Stadium which gives you a glimpse inside a place where state pride and competition is on the line.

The Interactive Map

The map is aimed to give you a glimpse into the depth the G.James knowledge base and provide an overview of the types of works that G.James is capable of.  It highlights projects done by various departments in the company, including:

  • Commercial departments
  • Residential departments
  • Gossi park and street furniture
  • Glass department

You can have a look at the map and plan out a scenic drive, or target specific jobs, or just get an idea of what we have produced, in your area.  As you can imagine, there are too many jobs to make this an all-inclusive list, but we aimed to include a range of jobs reflecting different styles and features.

A brief dossier on the project is included – a photo of what to look for, basic job data and links to further information on the project.  G.James can help you with any further information required for the jobs represented.

Explore Here…

Enjoy the exploration, and keep an eye on this space. Other areas will be released as our database of projects rolls out – Sydney, Melbourne, the Gold Coast, as well as other areas to be where you can find G.James fingerprints…

Until then, enjoy this insight into the River City.


 G.James Projects

 Gossi Designs

51 Alfred St – Efficiency in commercial design

51 Alfred St A green star accredited office block constructed in one of Brisbane’s growing commercial areas, 51 Alfred St comprises of a ground floor retail space with 8 levels of office space above.

51 Alfred St, Fortitude valley was constructed by Blackwatch Projects, to the design of Willis Greenhalgh Architects. The sustainable design intended to minimise its carbon footprint was a urban friendly solution to council and the community. It includes a smart foyer, featuring floor to ceiling full height glazing on two street frontages, and superb views to the city above level 2.

G.James Role

Development of the project went from initial “design in principle” early drawings to installation of the finalised glazing products. The project had a short time frame, and lead times for manufacture and installation had to be carefully managed.

The building incorporates shopfront glazing from ground floor to level 1 that used the 850-500 and 650-500 series framing systems. Hinged doors are 475 or 476 series, with 445 series sliding doors (as on some upper levels, also). G.James picked up the cladding package for the ground floor columns, which was made and fitted by the G.James Joinery department. QuickAlly, G.James scaffolding division assisted with providing access to entry the shop front entry glazing.

Upper levels utilizes the 651-500 curtain wall suite. The design had to allow for the addition of randomly placed aluminium horizontal and vertical fins that use different shapes in keeping with the difference in direction. There are also composite cladding positioned irregularly across the southern face, and frames the edge of the eastern face.

All of the differences in cladding and sun shading incorporated into the curtain wall, made for a wide variety of specialist panels.  This required coordinating the transportation and installation of the panels to be highly organised. Careful design, preparation and on site works were given particular attention at the corner feature to achieve the seamless angled cladding and glazed finish that spans the full height of the buildings office area.

Glazing selection

IGU’s were used in the vision areas of the tower to combat city noise and provide sufficient thermal and solar efficiency to achieve the green star accreditation.

The spandrel area uses a colourlite backing on clear glass to achieve the opaque finish. Charcoal and White were used to keep in theme with the buildings monochromatic scheme that highlights the slash of copper that makes the corner feature stand out.


There was no tower crane available for this job, so all of the framing hoisted into the floors from a crane on the street below.  Including the “Spider Hulk”, the name of the lifting crane that positions the panels into place.

51 Alfred St

“Spider Hulk” is the name of the machine that lifts the panels into position on the building.

Early design intended the framing to be fixed into cast ins – a quick and minimal fixing method that utilizes the concrete structure to enclose and support the framing. Later changes, however, meant that the frame fixings were redesigned and engineered to be fitted with bolts into the concrete.

The ground floor was site glazed as the size of the glazing was so large. There was also a curtain wall panel that needed to be site glazed. This requires extra safety measures and some specialised techniques to carry out.

Blackwatch had a tight program which was run like clockwork. It enabled overall job satisfaction with the resulting installation of the work performed by G.James, and we look forward to working on further projects together.

Project Update: Queensland Institute of Medical Research

QIMR Herston Rd Entrance

Transforming an existing medical research facility in Herston, QLD to align with the surrounding complex.

Queensland Institute of Medical Research Phase 3, or QIMR ph. 3, is the refurbishment of the Bancroft Centre. It is located just outside Brisbane’s CBD next to the Royal Brisbane Women’s Hospital.

The Bancroft Centre, owned by QIMR  is contracted to be built by Watpac. The project is designed by a joint architectural venture between Wilson and Wardle architects.

G.James’ Role

This project initiated as a design and documentation contract, in which G.James were required to advise and recommend the design of glazing works, survey the existing building and detail the information via formal drawings. Due to the positive contributions and coordination of this aspect of the project, G.James were awarded stage 2 – the supply and install of the glazing works.

The Bancroft Centre

The Bancroft Centre is a 14 storey concrete building with feature beams and columns criss crossing the building dividing up the individual windows and balconies spread across the elevations. At ground level, a large lobby window and sub station louvre is also part of the upgrade.

The medical research undertaken at the centre is highly sensitive. In the pursuit of the solutions being investigated, the building will be partially occupied by the client throughout the construction process. This will affect parts or entire floors at different stages. Close coordination of on site works, monitoring clients requirements and ensuring safety for all, dictates progress.

External Refurbish

The basic concrete structure remains, with the southern concrete face being removed and extended out towards Herston Road. The extensions are supported by a grid work of steel with concrete platforms. The face lift is to extend down the western side to the existing balconies and on the eastern side to the recently erected QIMR central building.

The architectural intent is to create a look that reflects the existing Clive Berghofer Cancer Research Centre (CBCRC) located on the other side of the QIMR central building. To do this:

  • The main façade on the curtain wall is being replicated as much as possible.
  • The visible rendered sheer walls are being covered with Alpolic cladding to wrap around to the front of the balconies and underside of the soffits in a similar fashion to the CBCRC building.
  • Glazing in the balconies and lobby were replaced to reflect the more natural colour scheme and full height layout of the CBCRC.
  • Louvres are being modernised and/or introduced to cope with the needs of the buildings updated research capacity, the design of which is in keeping with the other QIMR buildings.

G.James has followed stringent processing and approval of the glazing samples and design to ensure these principles are followed adequately.

Design: Energy and Acoustic Efficiency

Renovations on old buildings require them to be upgraded to meet the latest energy efficient guidelines. To accomplish this, the Bancroft refurbishment required higher performing windows than the original.  Another important design element to consider was that the Bancroft Centre is situated at what is now one of Brisbane’s busiest intersections.

Fronting onto Herston Road, a stones throw from Bowen Bridge Road, bus ways and the Inner City Bypass, shows the heightened necessity for acoustic protection.

The main curtain wall façade utilises the 651 series with highly efficient IGU’s made from Solarplus engineered glass with an acoustic laminate internally to assist with noise deadening. The visible features of the curtain wall replicate that of its neighbour providing a plaid pattern of greens and silver that provide the desired sister building effect.

The balconies use 450 framing with 475 door systems for the balconies’ hinged and sliding doors. A custom solution was introduced with laminated glass incorporating a thick 1.14mm acoustic laminate and energy tech inner lite working together for maximum efficiency and sound protection.

An environmental advantage to being involved in the design of the cladding, minimised the wastage by designing the cladding widths to suit what was commercially available. Approximately 85% of the panels could be made to their natural width.

Unusual Design Elements

The lobby or main entry spans a height of two stories. It has concrete features penetrating through the facade. This required some innovative design to incorporate these obstacles while maintaining the ability to replace the existing framing in a short turn around of a week. 650 framing was used in the lobby to achieve this.

The curtain wall is usually lifted into place by a mini crane positioned on the building.  It is dedicated to the curtain wall install.  On QIMR however, a tower crane had been fitted on site to accommodate phase 2 construction, and is also being used for phase 3.  This meant that fixing the curtain wall had to be timed in between other site deliveries and other uses required of the crane.

This has been a unique project with G.James contributing very early in the design process to assist in setting our the buildings requirements for our own and adjacent works. The achievements so far have culminated with smooth progression though out the project with the mutual assistance and close coordination between Watpac and G.James.

Looking ahead

G.James role at the Bancroft Centre is to be finalised approximately mid 2013, and the entire project to be competed by mid 2014. Tours of the QIMR facilities are available to the public. You can book a tour on the QIMR website.